Nuprl Lemma : functor_arrow_wf

`∀[C,D:SmallCategory]. ∀[F:Functor(C;D)]. ∀[x,y:cat-ob(C)]. ∀[f:cat-arrow(C) x y].  (F(f) ∈ cat-arrow(D) (F x) (F y))`

Proof

Definitions occuring in Statement :  functor_arrow: `F(f)` functor-ob: `ob(F)` cat-functor: `Functor(C1;C2)` cat-arrow: `cat-arrow(C)` cat-ob: `cat-ob(C)` small-category: `SmallCategory` uall: `∀[x:A]. B[x]` member: `t ∈ T` apply: `f a`
Definitions unfolded in proof :  uall: `∀[x:A]. B[x]` member: `t ∈ T` functor_arrow: `F(f)`
Lemmas referenced :  functor-arrow_wf cat-arrow_wf cat-ob_wf cat-functor_wf small-category_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut sqequalRule applyEquality extract_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality hypothesis axiomEquality equalityTransitivity equalitySymmetry isect_memberEquality because_Cache

Latex:
\mforall{}[C,D:SmallCategory].  \mforall{}[F:Functor(C;D)].  \mforall{}[x,y:cat-ob(C)].  \mforall{}[f:cat-arrow(C)  x  y].
(F(f)  \mmember{}  cat-arrow(D)  (F  x)  (F  y))

Date html generated: 2020_05_20-AM-07_51_01
Last ObjectModification: 2017_01_17-PM-00_44_46

Theory : small!categories

Home Index