### Nuprl Lemma : funtype-split

`∀[T:Type]. ∀[n:ℕ]. ∀[m:ℕn + 1]. ∀[A:ℕn ⟶ Type].  (funtype(n;A;T) = funtype(m;A;funtype(n - m;λk.(A (k + m));T)) ∈ Type)`

Proof

Definitions occuring in Statement :  funtype: `funtype(n;A;T)` int_seg: `{i..j-}` nat: `ℕ` uall: `∀[x:A]. B[x]` apply: `f a` lambda: `λx.A[x]` function: `x:A ⟶ B[x]` subtract: `n - m` add: `n + m` natural_number: `\$n` universe: `Type` equal: `s = t ∈ T`
Definitions unfolded in proof :  uall: `∀[x:A]. B[x]` member: `t ∈ T` exists: `∃x:A. B[x]` nat: `ℕ` int_seg: `{i..j-}` guard: `{T}` ge: `i ≥ j ` lelt: `i ≤ j < k` and: `P ∧ Q` all: `∀x:A. B[x]` decidable: `Dec(P)` or: `P ∨ Q` uimplies: `b supposing a` satisfiable_int_formula: `satisfiable_int_formula(fmla)` false: `False` implies: `P `` Q` not: `¬A` top: `Top` prop: `ℙ` sq_type: `SQType(T)` funtype: `funtype(n;A;T)` squash: `↓T` le: `A ≤ B` uiff: `uiff(P;Q)` less_than: `a < b` subtype_rel: `A ⊆r B` so_lambda: `λ2x.t[x]` so_apply: `x[s]` less_than': `less_than'(a;b)` true: `True` iff: `P `⇐⇒` Q` rev_implies: `P `` Q` bool: `𝔹` unit: `Unit` it: `⋅` btrue: `tt` ifthenelse: `if b then t else f fi ` bfalse: `ff` bnot: `¬bb` assert: `↑b` nequal: `a ≠ b ∈ T `
Lemmas referenced :  subtract_wf int_seg_properties nat_properties decidable__le satisfiable-full-omega-tt intformand_wf intformnot_wf intformle_wf itermConstant_wf itermSubtract_wf itermVar_wf intformless_wf itermAdd_wf int_formula_prop_and_lemma int_formula_prop_not_lemma int_formula_prop_le_lemma int_term_value_constant_lemma int_term_value_subtract_lemma int_term_value_var_lemma int_formula_prop_less_lemma int_term_value_add_lemma int_formula_prop_wf le_wf decidable__equal_int intformeq_wf int_formula_prop_eq_lemma equal_wf subtype_base_sq int_subtype_base ge_wf less_than_wf int_seg_wf add-zero primrec0_lemma funtype_wf squash_wf true_wf funtype-unroll-last-eq add-member-int_seg2 decidable__lt lelt_wf subtype_rel_dep_function int_seg_subtype false_wf subtype_rel_self iff_weakening_equal eq_int_wf bool_wf eqtt_to_assert assert_of_eq_int eqff_to_assert bool_cases_sqequal bool_subtype_base assert-bnot neg_assert_of_eq_int add-commutes
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut dependent_pairFormation dependent_set_memberEquality extract_by_obid sqequalHypSubstitution isectElimination thin setElimination rename because_Cache hypothesis hypothesisEquality natural_numberEquality addEquality productElimination dependent_functionElimination unionElimination independent_isectElimination lambdaEquality int_eqEquality intEquality isect_memberEquality voidElimination voidEquality sqequalRule independent_pairFormation computeAll instantiate cumulativity equalityTransitivity equalitySymmetry independent_functionElimination lambdaFormation intWeakElimination axiomEquality functionEquality universeEquality applyEquality imageElimination functionExtensionality imageMemberEquality baseClosed equalityElimination promote_hyp

Latex:
\mforall{}[T:Type].  \mforall{}[n:\mBbbN{}].  \mforall{}[m:\mBbbN{}n  +  1].  \mforall{}[A:\mBbbN{}n  {}\mrightarrow{}  Type].
(funtype(n;A;T)  =  funtype(m;A;funtype(n  -  m;\mlambda{}k.(A  (k  +  m));T)))

Date html generated: 2017_10_01-AM-08_39_46
Last ObjectModification: 2017_07_26-PM-04_27_42

Theory : untyped!computation

Home Index