Nuprl Lemma : lifting-callbyvalueall-decide-name_eq

  (let x ⟵ case name_eq(a;b) of inl(x) => F[x] inr(x) => H[x]
   in G[x] case name_eq(a;b) of inl(x) => let x ⟵ F[x] in G[x] inr(x) => let x ⟵ H[x] in G[x])


Definitions occuring in Statement :  name_eq: name_eq(x;y) callbyvalueall: callbyvalueall uall: [x:A]. B[x] top: Top so_apply: x[s] decide: case of inl(x) => s[x] inr(y) => t[y] sqequal: t
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T top: Top so_lambda: λ2x.t[x] so_apply: x[s]
Lemmas referenced :  lifting-callbyvalueall-decide top_wf
Rules used in proof :  sqequalSubstitution sqequalRule sqequalReflexivity cut lemma_by_obid sqequalHypSubstitution sqequalTransitivity computationStep isectElimination thin isect_memberEquality voidElimination voidEquality hypothesis isect_memberFormation introduction sqequalAxiom hypothesisEquality because_Cache

    (let  x  \mleftarrow{}{}  case  name\_eq(a;b)  of  inl(x)  =>  F[x]  |  inr(x)  =>  H[x]
      in  G[x]  \msim{}  case  name\_eq(a;b)  of  inl(x)  =>  let  x  \mleftarrow{}{}  F[x]  in  G[x]  |  inr(x)  =>  let  x  \mleftarrow{}{}  H[x]  in  G[x])

Date html generated: 2016_05_15-PM-02_07_17
Last ObjectModification: 2015_12_27-AM-00_37_32

Theory : untyped!computation

Home Index